Flexible and Efficient Reuse of Multi-mode Components for Building Multi-mode Systems
نویسندگان
چکیده
Software component reuse is deemed as an effective technique for managing the growing software complexity of large systems. Software complexity can also be reduced by partitioning the system behavior into different modes. Such a multi-mode system can change behavior by switching between modes under certain circumstances. Integrating component reuse and the multi-mode approach, we have developed the Mode Switch Logic (MSL), a framework dedicated to the development of multi-mode systems composed by reusable multi-mode components, i.e. components which can run in different modes. The mode switch handling of MSL is based on a fully distributed architecture in the sense that a system mode switch is achieved by the joint mode switches of different independently developed components. In this paper, we propose a mode transformation technique as a supplement to MSL for converting the distributed mode switch handling of MSL to a centralized mode switch handling. The goal is to enhance the run-time mode switch efficiency when components are deployed on a single hardware platform and global mode information is available. We demonstrate this technique by an example and reveal its potential industrial value.
منابع مشابه
An Efficient Genetic Agorithm for Solving the Multi-Mode Resource-Constrained Project Scheduling Problem Based on Random Key Representation
In this paper, a new genetic algorithm (GA) is presented for solving the multi-mode resource-constrained project scheduling problem (MRCPSP) with minimization of project makespan as the objective subject to resource and precedence constraints. A random key and the related mode list (ML) representation scheme are used as encoding schemes and the multi-mode serial schedule generation scheme (MSSG...
متن کاملDistributed Fuzzy Adaptive Sliding Mode Formation for Nonlinear Multi-quadrotor Systems
This paper suggests a decentralized adaptive sliding mode formation procedure for affine nonlinear multi-quadrotor under a fixed directed topology wherever the followers are conquered by dynamical uncertainties. Compared with the previous studies which primarily concentrated on linear single-input single-output (SISO) agents or nonlinear agents with constant control gain, the proposed method is...
متن کاملDevelopment and Analysis of a Novel Multi-Mode MPPT Technique with Fast and Efficient Performance for PMSG-Based Wind Energy Conversion Systems
Wind energy is one of the most promising renewable energy resources. Due to instantaneous variations of the wind speed, an appropriate Maximum Power Point Tracking (MPPT) method is necessary for maximizing the captured energy from the wind at different speeds. The most commonly used MPPT algorithms are Tip Speed Ratio (TSR), Power Signal Feedback (PSF), Optimal Torque Control (OTC) and Hill Cli...
متن کاملDifferential impact of multi-focus fan beam collimation with L-mode and conventional systems on the accuracy of myocardial perfusion imaging: Quantitative evaluation using phantoms
Objective(s): A novel IQ-SPECTTM method has become widely used in clinical studies. The present study compares the quality of myocardial perfusion images (MPI) acquired using the IQ-SPECTTM (IQ-mode),conventional (180° apart: C-mode) and L-mode (90° apart: L-mode) systems. We assessed spatial resolution, image reproducibility and quantifiability using various physical phantoms. Materials and Me...
متن کاملPareto Optimal Design Of Decoupled Sliding Mode Control Based On A New Multi-Objective Particle Swarm Optimization Algorithm
One of the most important applications of multi-objective optimization is adjusting parameters ofpractical engineering problems in order to produce a more desirable outcome. In this paper, the decoupled sliding mode control technique (DSMC) is employed to stabilize an inverted pendulum which is a classic example of inherently unstable systems. Furthermore, a new Multi-Objective Particle Swarm O...
متن کامل